# EXCESS ENTHALPIES OF CYCLOETHER + METHYL METHYLTHIOMETHYL SULFOXIDE OR DIMETHYL SULFOXIDE AT 298.15 K

## T. Kimura\*, S. Tahara and S. Takagi\*

## DEPARTMENT OF CHEMISTRY, FACULTY OF SCIENCE AND TECHNOLOGY, KINKI UNIVERSITY, KOWAKAE, HIGASHI-OSAKA 577, JAPAN

Excess enthalpies of ten binary mixtures of each of methyl methylthiomethyl sulfoxide (MMTSO) and dimethyl sulfoxide (DMSO) with one of the cycloethers (oxane, 1,3- and 1,4dioxanes, oxolane and 1,3-dioxolane) have been determined at 298.15 K. All the mixtures show positive excess enthalpies over the whole composition range. Excess enthalpies of the cycloether + MMTSO or DMSO decrease with increasing number of oxygen atoms in the cycloether molecules, except for oxolane + MMTSO. Excess enthalpies of MMTSO + cycloethers are smaller than those of DMSO + cycloethers for the same cycloether except for the 1,3dioxolane mixtures.

Keywords: binary mixtures, excess enthalpies

## Introduction

In our previous papers [2–7], excess thermodynamic functions for the binary mixtures of methyl methylthiomethyl sulfoxide (MMTSO) with water, benzene, dimethyl sulfoxide (DMSO), carbon tetrachloride, chloroform, dichloromethane, deuterochloroform, *n*-alkane-1-ols (n=1 to 9) and six methylbenzenes (C<sub>6</sub>H<sub>6-n</sub>(CH<sub>3</sub>)<sub>n</sub>, n = 1 to 3) and those of DMSO were reported.

In order to find a correlation between the thermodynamic properties of the mixtures and molecular structures of their components, excess enthalpies of the mixtures of MMTSO with some cycloethers (1,3- and 1,4-dioxanes, oxane, oxolane and 1,3-dioxolane) were determined over the whole composition range.

John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

<sup>\*</sup> To whom correspondence should be addressed.

## Experimental

#### Materials

Procedures of purification and the final purities of MMTSO (Nippon Soda Co.) and DMSO (Merck, uvasol) were the same as those described previously [2, 3]. Oxane (tetrahydropyran, Aldrich, anhydrous), 1.4-dioxane (Kishida, GR), 1,3-dioxane (Tokyo Kasei, GR), oxolane (tetrahydrofuran, Kishida, GR), and 1,3-dioxolane (Tokyo, Kasei, GR) were fractionally distilled over freshly activated molecular sieves 4A which had been evacuated at 453 K for 12 h under  $10^{-2}$  to  $10^{-3}$  Pa. GC results obtained by using each 2 m column of 10 per cent SE–30 on Chromosorb and 20 per cent PEG–1000 on Celite 545 with FID on Yanagimoto G180FP showed merely some trace-impurity peaks (< $10^{-7}$ ). Coulometric Karl-Fischer titration by a Moisture meter (Mitsubishi Chemical Ind., CA–02) gave the water content of each sample to be 0.01 mole per cent or less.

#### Apparatus and procedures

A twin-microcalorimeter of heat-conduction type (laboratory designation MC-AII) [3, 5, 8] was used for measurements of excess enthalpies at 298.15 K over the whole composition range. Pure liquids and the mixtures were loaded from weighed gas-tight syringes (Hamilton 1001TLL or 1002TLL) fitted with suitably bent stainless-steel needles (Hamilton HF730). A semi-microbalance (Mettler H20) was used before and after loading in a thermostated room. The details of calorimetric procedures and the reproducibility test of this calorimeter system were described elsewhere [5, 8].

#### **Results and discussion**

The experimental results of excess enthalpies obtained are summarized in Table 1 and plotted in Figs 1 and 2. They were fitted by Eq. (1) by the method of least squares

$$H^{\rm E} = (1-x) x \sum_{i=1}^{k} A_i (1-2x)^{i-1}$$
 (1)

The coefficients  $A_i$  in Eq. (1) and standard deviations of the fits  $s_f$ :

$$s_{\rm f} = \left[\frac{\sum_{i=1}^{n} \left\{H_i^{\rm E}({\rm obs.}) - H_i^{\rm E}({\rm calc})\right\}^2}{(n-k)}\right]^2$$
(2)

are given in Table 2.

J. Thermal Anal., 38, 1992

| x                          | $H_{\rm m}^{\rm E}$ / J·mol <sup>-1</sup> | x           | $H_{\rm m}^{\rm E}$ / J·mol <sup>-1</sup> | x        | $H_{\rm m}^{\rm E}$ / J·mol <sup>-1</sup> |  |
|----------------------------|-------------------------------------------|-------------|-------------------------------------------|----------|-------------------------------------------|--|
| (1-x) 1,4-dioxane + xMMTSO |                                           |             |                                           |          |                                           |  |
| 0.054065                   | 91.09                                     | 0.38667     | 283.28                                    | 0.70096  | 214.38                                    |  |
| 0.055348                   | 92.16                                     | 0.43277     | 286.28                                    | 0.70919  | 210.05                                    |  |
| 0.086895                   | 132.13                                    | 0.45338     | 284.11                                    | 0.73753  | 190.75                                    |  |
| 0.14844                    | 193.31                                    | 0.55629     | 269.13                                    | 0.79672  | 156.30                                    |  |
| 0.18721                    | 220.92                                    | 0.55834     | 271.14                                    | 0.85025  | 116.01                                    |  |
| 0.18917                    | 221.97                                    | 0.60514     | 258.14                                    | 0.93042  | 57.48                                     |  |
| 0.23801                    | 248.83                                    | 0.64898     | 234.49                                    | 0.97632  | 20.28                                     |  |
| 0.31518                    | 274.03                                    | 0.69693     | 216.01                                    |          |                                           |  |
|                            | (1-x) 1,3-dioxa                           | ane + xMMTS | 0                                         |          |                                           |  |
| 0.052146                   | 73.91                                     | 0.314488    | 252.83                                    | 0.807411 | 176.14                                    |  |
| 0.110314                   | 136.62                                    | 0.376435    | 262.94                                    | 0.811523 | 170.16                                    |  |
| 0.115655                   | 139.86                                    | 0.511667    | 262.80                                    | 0.827946 | 166.10                                    |  |
| 0.194451                   | 200.55                                    | 0.609186    | 245.99                                    | 0.901126 | 110.11                                    |  |
| 0.222189                   | 219.54                                    | 0.718283    | 219.50                                    | 0.955969 | 57.41                                     |  |
| 0.286202                   | 247.33                                    | 0.753907    | 200.36                                    |          |                                           |  |
|                            | (1-x) oxane                               | + xMMTSO    |                                           |          |                                           |  |
| 0.064768                   | 244.76                                    | 0.340723    | 608.31                                    | 0.835849 | 308.71                                    |  |
| 0.133333                   | 408.50                                    | 0.368916    | 629.25                                    | 0.847996 | 287.70                                    |  |
| 0.179649                   | 486.25                                    | 0.410080    | 629.59                                    | 0.878269 | 392.94                                    |  |
| 0.194189                   | 500.23                                    | 0.522029    | 625.63                                    | 0.910270 | 170.80                                    |  |
| 0.241801                   | 553.69                                    | 0.657630    | 548.10                                    | 0.955110 | 84.98                                     |  |
| 0.315183                   | 604.03                                    | 0.678348    | 529.22                                    | 0.966510 | 60.80                                     |  |
| 0.323371                   | 605.78                                    | 0.783828    | 392.94                                    |          |                                           |  |
|                            | (1-x) oxolan                              | e + xMMTSO  |                                           |          |                                           |  |
| 0.02285                    | 5.21                                      | 0.31489     | 66.36                                     | 0.73103  | 62.94                                     |  |
| 0.056912                   | 13.35                                     | 0.36901     | 73.44                                     | 0.77917  | 57.08                                     |  |
| 0.092821                   | 20.12                                     | 0.43776     | 78.26                                     | 0.78297  | 59.50                                     |  |
| 0.096290                   | 22.63                                     | 0.49931     | 78.29                                     | 0.78685  | 57.69                                     |  |
| 0.09944                    | 22.34                                     | 0.58738     | 75.21                                     | 0.86312  | 42.35                                     |  |
| 0.10640                    | 26.11                                     | 0.60660     | 72.00                                     | 0.91376  | 30.43                                     |  |
| 0.14179                    | 35.16                                     | 0.64591     | 70.25                                     | 0.97008  | 13.13                                     |  |
| 0.23807                    | 52.74                                     | 0.71533     | 64.15                                     |          |                                           |  |
| 0.24301                    | 53.14                                     | 0.71728     | 64.07                                     |          |                                           |  |
|                            |                                           |             |                                           |          |                                           |  |

**Table 1** Excess enthalpies  $H_m^B$  of cyclic ethers + MMTSO and cyclic ethers + DMSO at 298.15 K

| x                                     | $H_{\rm m}^{\rm E}$ / J·mol <sup>-1</sup> | <i>x</i>       | $H_{\rm m}^{\rm E}$ / J·mol <sup>-1</sup> | x       | $H_{\rm m}^{\rm E}$ / J·mol <sup>-1</sup> |
|---------------------------------------|-------------------------------------------|----------------|-------------------------------------------|---------|-------------------------------------------|
| · · · · · · · · · · · · · · · · · · · | (1 - x) 1,3-dioxol                        | ane + xMMT     | so                                        |         |                                           |
| 0.03472                               | 38.92                                     | 0.40897        | 228.52                                    | 0.77352 | 136.36                                    |
| 0.07169                               | 75.33                                     | 0.48214        | 229.68                                    | 0.77692 | 134.15                                    |
| 0.16483                               | 145.56                                    | 0.55832        | 217.97                                    | 0.83342 | 105.25                                    |
| 0.25264                               | 193.71                                    | 0.63732        | 196.02                                    | 0.91925 | 51.98                                     |
| 0.33519                               | 220.87                                    | 0.70229        | 172.04                                    | 0.96545 | 24.45                                     |
|                                       | (1 – x) 1,4-diox                          | ane + $x$ DMS( | )                                         |         |                                           |
| 0.035283                              | 46.89                                     | 0.45876        | 345.93                                    | 0.87792 | 157.11                                    |
| 0.070321                              | 95.17                                     | 0.54808        | 346.79                                    | 0.90217 | 129.17                                    |
| 0.12286                               | 154.32                                    | 0.64739        | 318.95                                    | 0.95612 | 62.42                                     |
| 0.16271                               | 193.64                                    | 0.71054        | 289.92                                    | 0.98478 | 24.36                                     |
| 0.25180                               | 268.11                                    | 0.77162        | 250.05                                    |         |                                           |
| 0.35314                               | 320.14                                    | 0.79518        | 231.18                                    |         |                                           |
|                                       | (1 – x) 1,3-diox                          | ane + xDMSC    | )                                         |         |                                           |
| 0.03547                               | 38.95                                     | 0.32562        | 320.67                                    | 0.70701 | 307.38                                    |
| 0.06920                               | 75.36                                     | 0.40084        | 360.95                                    | 0.78542 | 237.67                                    |
| 0.14206                               | 153.62                                    | 0.45010        | 375.14                                    | 0.82947 | 194.91                                    |
| 0.14413                               | 164.78                                    | 0.51922        | 378.60                                    | 0.89520 | 127.48                                    |
| 0.18137                               | 201.13                                    | 0.55036        | 370.99                                    | 0.95940 | 51.49                                     |
| 0.24081                               | 256.26                                    | 0.63804        | 348.39                                    | 0.97923 | 24.71                                     |
|                                       | (1-x) oxand                               | e + xDMSO      |                                           |         |                                           |
| 0.01250                               | 68.36                                     | 0.38841        | 904.18                                    | 0.81637 | 543.79                                    |
| 0.03878                               | 193.84                                    | 0.43176        | 925.25                                    | 0.84809 | 466.66                                    |
| 0.06306                               | 302.65                                    | 0.45487        | 924.22                                    | 0.87954 | 386.14                                    |
| 0.12618                               | 523.54                                    | 0.48312        | 925.18                                    | 0.89879 | 333.90                                    |
| 0.17026                               | 639.87                                    | 0.53993        | 908.42                                    | 0.95738 | 150.19                                    |
| 0.24205                               | 773.64                                    | 0.62814        | 840.01                                    | 0.96853 | 116.64                                    |
| 0.29359                               | 842.39                                    | 0.68174        | 782.75                                    |         |                                           |
| 0.37421                               | 904.18                                    | 0.77819        | 625.31                                    |         |                                           |
|                                       | (1-x) oxolar                              | he + xDMSO     |                                           |         |                                           |
| 0.03308                               | 41.25                                     | 0.24603        | 295.24                                    | 0.71774 | 399.51                                    |
| 0.04793                               | 40.65                                     | 0.33290        | 375.95                                    | 0.81071 | 302.94                                    |
| 0.09617                               | 120.16                                    | 0.41045        | 435.44                                    | 0.88452 | 197.48                                    |
| 0.12382                               | 152.54                                    | 0.52542        | 469.55                                    | 0.93233 | 121.11                                    |
| 0.14544                               | 177.56                                    | 0.56058        | 475.25                                    | 0.98352 | 30.48                                     |
| 0.19402                               | 241.57                                    | 0.63138        | 455.55                                    |         |                                           |

## Table 1 Continued

| x       | $H_{\rm m}^{\rm E}$ / J·mol <sup>-1</sup> | x            | $H_{\rm m}^{\rm E}$ / J·mol <sup>-1</sup> | x       | $H_{\rm m}^{\rm E}$ / J·mol <sup>-1</sup> |
|---------|-------------------------------------------|--------------|-------------------------------------------|---------|-------------------------------------------|
| ******* | (1 – x) 1,3-dioxo                         | plane + xDMS | 0                                         |         |                                           |
| 0.03197 | 15.82                                     | 0.39103      | 139.98                                    | 0.76705 | 122.08                                    |
| 0.06378 | 30.88                                     | 0.41306      | 143.59                                    | 0.80093 | 110.45                                    |
| 0.11966 | 56.82                                     | 0.50005      | 153.33                                    | 0.85015 | 90.03                                     |
| 0.13514 | 62.10                                     | 0.50499      | 153.59                                    | 0.88034 | 75.37                                     |
| 0.21868 | 93.74                                     | 0.60292      | 153.02                                    | 0.95145 | 34.02                                     |
| 0.31476 | 122.86                                    | 0.60744      | 152.70                                    | 0.97610 | 17.36                                     |
| 0.32027 | 126.94                                    | 0.70553      | 138.44                                    |         |                                           |

Table 1 Continued

All the excess enthalpies observed here were positive over the whole composition range at the temperature studied. As shown in Figs 1 and 2, the enthalpy of mixing of cyclomonoether, oxane, with MMTSO or DMSO showed the largest endothermic enthalpy. The excess enthalpies of the cyclodiethers, 1,3- and 1,4dioxanes + MMTSO were less endothermic than that of the monoether, oxane, + MMTSO. This tendency obtained for the mixtures of MMTSO with mono- and diether of six-membered rings were obtained also for the corresponding DMSO mixtures. However, this sequence was not obtained for the mixtures of five-membered ring cycloethers with MMTSO, although it held for the mixtures with DMSO. The mixture of oxolane + MMTSO had the smallest endothermic excess enthalpy among the mixtures containing cycloethers studied in the present work. On the other hand, excess volumes of oxolane + MMTSO [9]. The contribution of enthalpic stabilization due to the largest volume contraction might be larger than those for other cycloether + MMTSO mixtures.



Fig. 1 Excess enthalpies of (1-x)cycloethers + xMMTSO at 298.15 K: O, 1,4-dioxane; □, 1,3-dioxane; △, oxane;•, 1,3-dioxolane; ■, oxolane

J. Thermal Anal., 38, 1992

| <b>Table 2</b> Coeffi | icients Ai of Eq. (1) | and the calculated | standard deviation | s of the fit s <sub>f</sub> |         |         |                          |
|-----------------------|-----------------------|--------------------|--------------------|-----------------------------|---------|---------|--------------------------|
| S                     | ystem                 | $A_1$              | A2                 | A3                          | $A_4$   | As      | sf / J·mol <sup>-1</sup> |
| 1,4-dioxane           | + MMTSO               | 1113.0             | 302.6              | 259.0                       | 240.6   |         | 2.1                      |
| 1,3-dioxane           | + MMTSO               | 1050.5             | 182.3              | 437.6                       | -129.1  |         | 1.9                      |
| охапе                 | + MMTSO               | 2511.7             | 356.8              | 667.8                       | 1056.1  |         | 1.9                      |
| oxolane               | + MTSO                | 310.33             | 5.04               | -11.22                      | -132.96 | 51.00   | 1.3                      |
| 1,3-dioxolane         | + MMTSO               | 904.78             | 234.15             | 29.39                       | 5.2638  |         | 1.5                      |
| l,4-dioxane           | + DMSO                | 1393.4             | 63.37              | 95.42                       | -161.07 |         | 2.1                      |
| 1,3-dioxane           | + DMSO                | 1519.6             | -20.35             | 366.54                      | -64.68  |         | 2.3                      |
| oxane                 | + DMSO                | 3687.8             | 501.40             | 763.39                      | 389.00  | 248.08  | 2.2                      |
| oxolane               | + DMSO                | 1870.0             | -410.45            | -321.08                     | 104.41  |         | 2.2                      |
| 1,3-dioxolane         | + DMSO                | 602.92             | -50.44             | 123.71                      | -117.35 | -129.75 | 2.0                      |



Fig. 2 Excess enthalpies of 1-x)cycloethers + xDMSO at 298.15 K: O, 1,4-dioxane; □, 1,3-dioxane; △, oxane; ●, 1,3-dioxolane; ■, oxolane

For the MMTSO mixtures, six-membered ring cycloethers gave more positive excess enthalpies, that is larger enthalpic destabilization than the five-membered ring cycloethers. The same result was obtained for the mixtures with DMSO, except that with oxolane.

In other words, enthalpic destabilization on mixing decreased with increasing number of ether oxygens in each cycloether molecule, except for oxolane + DMSO. Since the five-membered-ring cycloethers have larger ratios of molecular surfaces of polar oxygen atoms than the six-membered-ring ethers by about 20 per cent, the enthalpic destabilization due to the hindrance of dipolar interaction among the sulfoxides by insertion of nonpolar surfaces of the former cycloethers might be more decreased than the latter ones. Electrostatic stabilization between sulfoxide and ether radicals may be added to the above effect.

Because DMSO molecules have larger dipole moment ( $\mu = 13.4 \times 10^{-30}$ C·m) [10] than MMTSO ( $\mu = 10.7 \times 10^{-30}$ C·m) [11] in pure liquid state, the DMSO mixtures may exhibit larger positive enthalpies than MMTSO mixtures, owing to the insertion of nonpolar molecules of the ether molecules.

For the sake of elementary consideration of pair interaction, excess partial molar enthalpies at infinite dilution were determined from Eq. (1) with the coefficients in Table 2, and are summarized in Table 3. There are complicated relations between the number of ether radicals and the excess partial molar enthalpies at infinite dilution. The latter values  $H_1^{E,\infty}$  and  $H_2^{E,\infty}$  were plotted in Fig. 3 against

the number of methylene radicals between oxygen atoms in cycloether for the sake of understanding the effect on dipole-dipole interaction. Linear relationships were obtained as shown in Fig. 3 between the limiting excess partial molar enthalpies of the systems of the cycloethers + MMTSO or + DMSO at infinite dilution and the number of methylene radicals,  $N(-CH_2-)$ , of 1,3-dioxane, 1,4-dioxane and oxane except oxolane, if the number of 1,3-dioxane was counted as one in the place of three. This may show the effect of close localization of polar ether radicals upon intermolecular interactions between 1,3-dioxane and MMTSO. The limiting excess partial molar enthalpies of the cycloethers,  $H_1^{E,\infty}$ , of all the mixtures with MMTSO studied are longer than those of MMTSO,  $H_2^{E,\infty}$ , except for oxolane + MMTSO. Similar result had been obtained for the mixtures of methylbenzenes and MMTSO [7], although the mixtures of MMTSO with water [3], chloromethanes [4], and *n*-alkane-1-ols [6] were different.

| System                     | $H_1^{\mathrm{E}<\infty}$ / kJ mol <sup>-1</sup> | $H_2^{\mathrm{E}<\infty}$ / kJ·mol <sup>-1</sup> |
|----------------------------|--------------------------------------------------|--------------------------------------------------|
| 1,4-dioxane(1) + MMTSO (2) | 0.83                                             | 1.92                                             |
| 1,3-dioxane(1)+MMTSO (2)   | 1.43                                             | 1.54                                             |
| oxane(1)+MMTSO (2)         | 1.77                                             | 4.59                                             |
| oxolane(1)+MMTSO (2)       | 0.48                                             | 0.22                                             |
| 1,3-dioxolane(1)+MMTSO (2) | 0.69                                             | 1.17                                             |
| 1,4-dioxane(1)+DMSO (2)    | 1.58                                             | 1.39                                             |
| 1,3-dioxane(1)+DMSO (2)    | 1.24                                             | 1.07                                             |
| oxane(1)+DMSO (2)          | 3.81                                             | 5.59                                             |
| oxolane(1)+DMSO (2)        | 1.85                                             | 1.24                                             |
| 1,3-dioxolane+DMSO (2)     | 0.76                                             | 0.43                                             |

**Table 3** Limiting partial molar excess enthalpies  $H_1^{E<\infty}$ , and  $H_2^{E<\infty}$  at 298.15 K

The limiting excess partial molar enthalpies of MMTSO in cycloether were increased by 1.0 kJ mol<sup>-1</sup> per methylene radical except for the mixture containing oxolane. Those of MMTSO in methylbenzenes were increased by 0.67 kJ mol<sup>-1</sup> per methyl radical [7]. The effect of methylene radicals in alicyclic molecules on the excess enthalpies were larger than that of methyl radicals in aromatic molecules. As we reported previously [2–7], the mixtures containing MMTSO are energetically less stable or more unstable than those containing DMSO, when the other component is polar, irrespective of being aprotic or protic, namely water [3], chloroform, deuterochloroform [5], dichloromethane [4], *n*-alkane-1-ols [6], and methyl alkylketones [12]. On the other hand, the mixtures containing DMSO, are more unstable than those with MMTSO, when the second component is nonpolar as  $C_6H_{6-n}(CH_3)_n$ , n = 0 to 3 [3, 7]. Although cycloethers have polar radicals, the mixture of cyclic ether + MMTSO and cyclic ether + DMSO showed a behaviour similar to the mixtures with nonpolar component. The major effect on the excess enthalpies of cycloether + MMTSO or + DMSO might arise from a hindrance of stable dipolar contacts by the non-polar radicals.



Fig. 3 Limiting excess partial molar enthalpies as a function of the number of methylene radicals between oxygen atoms: (A), cycloether(1) + MMTSO(2), (B) cycloether(1) + DMSO(2): O, H<sub>1</sub><sup>E,∞</sup>; ●, H<sub>2</sub><sup>E,∞</sup>, 1, 1,4-dioxane; 2, 1,3-dioxane, 3, oxane; 4, oxolane; 5, 1,3-dioxolane

#### References

- 1 Thermodynamics of liquid mixtures containing methyl methyl-thiomethyl sulfoxide. IX.
- 2 T. Kimura and S. Takagi, J. Chem. Thermodyn., 18 (1986) 447.
- 3 T. Kimura and S. Takagi, Netsu Sokutei, 13 (1986) 2.
- 4 T. Kimura, T. Chanoki, H. Mizuno and S. Takagi, Nippon Kagaku Kaishi, 1986 (1986) 509.
- 5 T. Kimura and S. Takagi, Thermochim. Acta, 123 (1987) 293.
- 6 T. Kimura, T. Morikuni, T. Chanoki and S. Takagi, Netsu Sokutei, 17 (1990) 67.
- 7 T. Kimura, T. Tsuji, Y. Usui and S. Takagi, Thermochim. Acta, 163 (1990) 183.
- 8 T. Kimura and S. Takagi, J. Fac. Sci. Technol. Kinki Univ., 18 (1983) 49.
- 9 T. Kimura, S. Ebara, S. Segawa and S. Takagi, to be published.
- 10 E. M. Arnett and D. R. McKelvey, J. Amer. Chem. Soc., 88 (1966) 2598.
- 11 T. Kimura, Y. Toshiyasu and S. Takagi, to be published.
- 12 T. Kimura, N. Hirota and S. Takagi, to be published.

Zusammenfassung — Bei 298.15 K wurden die Überschußenthalpien von zehn binären Gemischen aus jeweils Methylmethylthiomethylsulfoxid (MMTSO) bzw. Dimethylsulfoxid (DMSO) mit einem der cyclischen Ether (Oxan, 1,3- und 1,4-Dioxan, Oxolan und 1,3-Dioxo-

lan) bestimmt. Alle Gemische zeigen im gesamten Konzentrationsbereich eine positive Überschußenthalpie. Die Überschußenthalpien von Cycloether + MMTSO oder DMSO sinken mit zunehmender Anzahl der Sauerstoffatome im cyclischen Ether, mit Ausnahme von Oxolan + MMTSO. Die Überschußenthalpien für MMTSO + Cycloether sind kleiner als die für DMSO + entsprechender Cycloether, eine Ausnahme bilden die Gemische mit 1,3-Dioxolan.